NORMAN V. DUFFY

Department of Chemistry, Kent State University, Kent, Ohio 44242, U.S.A. **Received June 23,198O**

The reported preparations of mixed ligand spincrossover iron(III) dithiocarbamates have been reexamined. Reaction products of NaS₂CNR'₂ with either $Fe(S_2CNR_2)_3$, $Fe(S_2CNR_2)_2Cl$ or $Fe(S_2CNR_2)_2NCS$ and between $Fe(S_2CNR_2)_3$ and $Fe(S_2CNR'_2)_3$ in solution were studied by ¹H NMR *and infrared spectrometry and elemental analysis.* The results indicate the $Fe(S_2CNR_2)_3$ is not substitu*tion inert and the product is determined by the relative stabilities and solubilities of the complexes undergoing metathesis.*

The reported preparations of $Fe(S_2CNR_2)_2$ *-* $(S_2CNR'_2)$ are apparently in error.

Introduction

Magnetic susceptibility $[1-7]$, spectral $[5]$ and crystallographic [8,9] investigations of tris(diorganodithiocarbamato)iron(III) complexes, $Fe(dtc)_3$, where $\text{dtc} = S_2 \text{CNRR}'$ and R and R' are organic substituents, have yielded considerable insight into these spin-crossover complexes. The inclusion of solvate molecules in the solid state causes significant changes [10, 11] in the temperature-dependent magnetic moments of some of these complexes. An $S = 3/2$ ground state has been proposed [lo] for a few of these solvated $Fe(dtc)_3$ complexes. This departure from the normal $S = 1/2 \neq S = 5/2$ equilibrium may be the result of additional distortions caused by the solvate molecule of the already distorted $FeS₆$ octahedron.

Recently, the preparation and properties of six mixed-ligand tris(diorganodithiocarbamato)iron(III) complexes, $Fe(S_2CNR_2)_2(S_2CNR'_2)$, were reported [12]. Preparation of these complexes involved reaction between stoichiometric amounts of the appropriate chloro complex, $Fe(S_2CNR_2)_2Cl$, and a salt of S_2CNR_2' in chloroform-acetone or chloroformalcohol solutions.

In 1973, Pignolet *et al.* reported [13] proton NMR studies which indicated that, for Fe(III), ligand exchange (or metathesis)

$$
Fe(S_2CNR_2)_3 + Fe(S_2CNR'_2)_3 \rightarrow
$$

$$
Fe(S_2CNR_2)_2(S_2CNR'_2) + Fe(S_2CNR_2)(S_2CNR'_2)_2
$$

was slower than the intramolecular isomerization, but that mixed complexes appeared immediately and usually reached equilibrium within several minutes. In 1980, Kostanski and Magas [14] reported that the exchange between $Fe(S_2CN(C_2H_5)_2)$ and radioactive $NaS₂CN(C₂H₅)₂$ in dioxane and dimethylformamide was too fast to measure at 20 \mathcal{C} using radiotracer techniques.

These studies are in apparent contradiction, the first implying that spin-crossover $Fe(dtc)₃$ complexes are inert and the other two indicating that they are relatively labile.

This paper reports studies of these mixed ligand complexes and attempts to prepare mixed-ligand complexes using *non-stoichiometric* quantities of reactant and alternative preparative methods. The products have been identified through a combination of elemental analysis, infrared and proton magnetic resonance spectra. Reactions involving both predominantly high-spin Fe(dtc)₃ (e.g., Fe(S₂CN(C₂H₅)₂)₃, μ_{eff} = 4.37 μ_{B} [6] and low-spin Fe(dtc)₃ (e.g., $Fe(S_2CN(C_6H_{11})_2)_3$, μ_{eff} = 2.55 μ_B [5]) complexes exhibit metathesis. The proton magnetic resonance spectra give clear evidence for the formation of mixed-ligand complexes, e.g., $Fe(S_2CN(C_6H_{11})_2)_2$ - $(S_2CN(C_2H_5)_2).$

Experimental

Infrared spectra were measured as Nujol mulls on a Perkin-Elmer Model 283 recording spectrophotometer.

Proton NMR spectra were measured in $CHCl₃$ solution $(0.01 - 0.05)$ *M*) at ambient temperature on a Varian FT-80 Fourier Transform NMR spectrometer.

Elemental analyses were performed by Chemalytics, Inc. (Tempe, Ariz.) or Galbraith Laboratories, Inc. (Knoxville, Tenn.).

Preparation of Complexes

The tris(dialkyldithiocarbamato)iron(III) complexes were prepared by published methods [2, 31 and gave satisfactory elemental analyses.

The sodium salts of diethyl- and dimethyldithiocarbamate were commercially available (Fisher Scientific Co. and Eastman Kodak Co., respectively) and used as received. Sodium morpholinyl-N-carbodithioate was prepared by a standard method $[15]$.

 $Fe(S_2CN(CH_3)_2)_2Cl$ was prepared by reacting $Fe(S_2CN(CH_3)_2)_3$ dissolved in C_6H_6 with conc. HCl (aq) according to a published method [16]. The product was recrystallized from CH₂Cl₂. Anal. Calcd. for $C_6H_{12}C$ IFeN₂S₄: C, 21.72; H, 3.65; N, 8.45. Found: C, 21.60; H, 3.73; N, 8.35.

 $Fe(S_2CN(C_2H_5)_2)_2Cl$ was prepared in a similar manner. Anal. Calcd. for C₁₀H₂₀ClFeN₂S₄: C, 30.98; H, 5.20; N, 7.23. Found: C, 29.67; H, 5.54;N, 6.89. The complex was also prepared by reacting $Fe(S_2CN (C_2H_5)_2$ ₃ with CH₃HgCl in CH₂Cl₂ according to a published method [17]. Found: C, 30.90; H, 5.26; N, 6.66.

 $Fe(S_2CN(C_6H_{11})_2)_2Cl$ was prepared by a method similar to the dimethyl derivative. *Anal.* Calcd. for $C_{26}H_{44}ClFeN_2S_4$: C, 51.68; H, 7.34; N, 4.64. Found: C, 52.06; H, 7.41; N, 4.90.

 $Fe(S_2CN(C_2H_5)_2)$, NCS was prepared by the reaction [18] between $[Fe(S_2CN(C_2H_5)_2)]$ dissolved in C_6H_6 and an aqueous mixture of NaSCN and H_2SO_4 . Anal. Calcd. for C₁₁H₂₀FeN₃S₅: C, 32.19; H, 4.91; N, 10.24. Found: C, 32.06; H, 5.06; N, 10.07.

 $Fe(S_2CN(C_6H_{11})_2)_2NCS$ was prepared by refluxing a mixture of $Fe(S_2CN(C_6H_{11})_2)_3$ and AgSCN in C_6H_6 [17]. *Anal.* Calcd. for $C_{27}H_{44}FeN_3S_5$: C, 51.73; H, 7.08; N, 6.71, Found: C, 51.44; H, 6.80; N, 6.73.

Reactions

 $Fe(S_2CNR_2)_2Cl + Na(S_2CNR_2')$

I. Two grams (14 mmol) of $NaS₂CN(CH₃)₂$ was dissolved in 75 ml of acetone. To this filtered solution was added a filtered solution of 0.18 g (0.46 mmol) of $Fe(S_2CN(C_2H_5)_2)$ ₂Cl (prepared by the benzene, HCl (aq) method) dissolved in 20 ml of $CHCl₃$. The black solution was reduced in volume under vacuum, absolute ethanol added and 0.19 g of black solid separated by filtration. The infrared spectrum of this product (Nujol mull) was identical to that of $Fe(S_2CN(CH_3)_2)_3$.

II. To a filtered solution of 0.58 g (1.5 mmol) of $Fe(S_2CN(C_2H_5)_2)_2Cl$ (prepared by reaction with $CH₃HgCl$) dissolved in 30 ml of $CHCl₃$ was added 2.15 g (15 mmol) of $NaS_2CN(CH_3)_2$ dissolved in 40 ml of methanol. The green solution immediately turned black and a trace of black solid was separated immediately by filtration. The filtrate was cooled in an ice bath and its volume reduced under vacuum. Black crystals were separated by filtration, rinsed with absolute ethanol and dried at 70 "C. Elemental analysis identified the product as $Fe(S_2CN(CH_3)_2)_3$ (Calcd. for $C_9H_{18}FeN_3S_6$: C, 25.95; H, 4.36; N, 10.09. Found C, 27.63; H, 4.37; N, 10.08).

III. To a green filtered solution of 0.30 g (0.50 mmol) of $Fe(S_2CN(C_6H_{11})_2)_2Cl$ in 15 ml of CHCl₃ was added a colorless filtered solution of 3.38 g (15 mmol) of $NaS_2CN(C_2H_5)_2.3H_2O$ dissolved in 125 ml of acetone. The resulting chocolate brown solution was evaporated to dryness under vacuum and the solid product slurried in 30 ml of absolute ethanol. The light chocolate brown solid product was separated by filtration and rinsed with distilled water and absolute ethanol. Yield: 0.20 g. The infrared spectrum of the product (Nujol mull) was similar to that of $Fe(S_2CN(C_6H_{11})_2)_3$, but elemental analysis revealed a product of intermediate composition (Calcd. for $C_{39}H_{66}FeN_3S_6$: C, 56.76; H, 8.06; N, 5.90; for $C_{15}H_{30}FeN_3S_6$; C, 35.99; H, 6.04; N, 8.39. Found: C, 50.58; H, 7.52; N, 5.54).

IV. One-tenth of a gram (0.17 mmol) of $Fe(S_2CN (C_6H_{11})_2$)₂Cl dissolved in 10 ml of CHCl₃ was mixed with 0.71 g (5.0 mmol) of $NaS₂CN(CH₃)₂$ dissolved in 60 ml of acetone. The chocolate brown solution was evaporated to dryness under vacuum and the solid product was slurried in 30 ml of absolute ethanol, separated by filtration, rinsed with distilled water and absolute ethanol and dried overnight at 70 "C. Yield: 0.13 g. The infrared spectrum of the product (Nujol mull) was similar to that of $Fe(S_2CN(C_6H_{11})_2)_3$ except for a peak at 1715 cm⁻¹ which may indicate some acetone of crystallization. *Anal.* Calcd. for $C_{39}H_{66}FeN_3S_6$: C, 56.76; H, 8.06; N, 5.09. Found: C, 55.59; H, 8.33; N, 4.93 $(Fe(S_2CN(C_6H_{11})_2)_2(S_2CN(CH_3)_2)$ is not indicated; calcd. for $C_{29}H_{50}FeN_3S_6$: C, 50.56; H, 7.32; N, 6.10).

 $Fe(S_2CNR_2)_2NCS + Na(S_2CNR'_2)$

I. On mixing together a green filtered solution of 0.28 g (0.68 mmol) of $Fe(S_2CN(C_2H_5)_2)$ ₂NCS in 15 ml of CHCl₃ and a filtered solution of 2.93 $g(20)$ mmol) of $NaS_2CN(CH_3)_2$ dissolved in 100 ml of acetone, a black solution resulted. The solution was reduced in volume under vacuum and absolute ethanol added. Black crystals were separated by filtration and rinsed with cold absolute ethanol. Yield: 0.20 g. The infrared spectrum of the product (Nujol mull) is identical to $Fe(S_2CN(CH_3)_2)_3$.

II. To a filtered solution of 0.50 g (0.80 mmol) of $Fe(S_2CN(C_6H_{11})_2)_2NCS$ in 40 ml of CHCl₃ was added a filtered solution of 0.30 g (1.6 mmol) of $NaS₂CN(CH₂)₄O$ dissolved in 15 ml of methanol. On the addition of the sodium salt of the dithiocarbamate, the green solution immediately became chocolate brown and no precipitate was formed. The solution was reduced in volume, absolute ethanol added and a pale chocolate brown solid separated by filtration, rinsed with small quantities of pentane and dried at 70 "C. Yield: 0.40 g. An infrared spectrum of the product showed no absorption at 2060 cm^{-1} (SCN) and was significantly different from the spectrum of $Fe(S_2CN(C_6H_{11})_2)_3$. The proton NMR spectrum of the product was identical (except for relative intensities) to the CHCl₃ solution of $Fe(S_2CN (C_6H_{11})_2$)₃ and Fe(S₂CN(CH₂)₄O)₃ (see below).

$Fe(S_2CNR_2)_3 + Na(S_2CNR_2)$

I. To a solution of 0.44 g (0.88 mmol) of $Fe(S_2CN(C_2H_5)_2)$ dissolved in 150 ml of acetone was added 4.30 g (30 mmol) of $NaS₂CN(CH₃)₂$ dissolved in 200 ml of acetone. The mixture was stirred for 30 minutes at room temperature and then reduced in volume under vacuum. Absolute ethanol cuuccu in volume unuel vacuum, Absolute chianol vas aqueu anu the volume of the inficult reduced
redes recovery. Elisation vielded fine black crystals. under vacuum. Filtration yielded fine black crystals (0.23 g) which were washed with small portions of v.23 g will well washed with small politicis of bsolute chianol and acctone. The product was θ $\frac{1}{2}$ calcd. for Cr, H₁sex, C₁, H₁, A₂6; N₁ 20.000. Found: C, 26.64; H, 4.39.64; H, 4.39.64; H, 4.39.64; H, 4.39.64; H, 4.004). U , I U II , U , 20.04 , II , 4.30 , N , 10.04 .
 I , T_2 , a solution of 0.40 g (0.96 mmol) of

 $H_1 = 10$ a solution of 0.40 g (0.70 millol) of H_2 (C CN(CH)) dissolved in 200 ml of acetone was $Fe(S_2CN(CH_3)_2)_3$ dissolved in 200 ml of acetone was added 6.49 g (28.8 mmol) of $NaS_2CN(C_2H_5)_2.3H_2O$ dissolved in 150 ml of acetone. The acetone was removed by vacuum and a small quantity of absolute ethanol added. Filtration yielded a black solid (0.44 g) which was washed with small quantities of absolute μ which was washed while shall qualities of absolute that the unclusion of \mathbf{C} . The impared spectrum of the \mathbf{C} $(C_2H_5)_2$ ₃.

III. Solutions of 0.50 g (0.60 mmol) of $Fe(S_2CN (C_6H_{11})_2$)₃ in 25 ml of CHCl₃ and 4.05 g (18 mmol) $\mu_{\text{off}}(C_{1})$ and $\mu_{\text{off}}(C_{2})$ and $\mu_{\text{off}}(C_{3})$ and $\mu_{\text{off}}(C_{4})$ $\frac{1}{1}$ reacher were mixed together, filtered and stirred at acetone were mixed together, filtered and stirred at room temperature for ninety minutes. The mixture was then evaporated to dryness under vacuum and the residue shuried in absolute ethanol. A dark brown solid was separated by filtration, rinsed with absolute ethanol and dried at 70 °C. The infrared spectrum of the product (0.42 s) was virtually identical to that s^2 Fe $\frac{1}{C}$ (CN(C II)2) was virtually inclined to that of σ (32(CN(C611112)3 cacept for absorptions at 1715 A_{tot} rinsing with distilled water and absolute After rinsing with distilled water and absolute ethanol, the product was recrystallized from chloroform-absolute ethanol, rinsed with absolute ethanol μ d dried at 70 μ . The infrared and proton NMD $\frac{1}{10}$ and $\frac{1}{10}$ $\frac{1}{10$ spectra of the dark brown product (0.34 g) were virtually identical to that of $Fe(S_2CN(C_6H_{11})_2)_3$. Anal. Calcd. for C₃₉H₆₆FeN₃S₆: C, 56.76; H, 8.06; N, 5.09. Found: C, 54.71; H, 8.12; N, 4.78.

Results and **Discussion**

$Fe(S_2CNR_2)_3 + Fe(S_2CNR_2)_3$

 $\sum_{i=1}^{n} \frac{1}{i}$ organo ditto di carbano di carbano di complexes reported della complexe reported della complexes reported della organodithiocarbamato)iron(III) complexes reported by Pignolet et al. $[13]$ and Kostanki and Magas $[14]$ are confirmed. Figure 1 shows a portion of the roomtemperature proton NMR spectra (in CDCl₃): a) tris-(morpholinyl-N-carbodithioato)iron(III), b) tris(N,Ndicyclohexyldithiocarbamato)iron(III), and c) a 1:1 mol mixture of a and b recrystallized from chloro-
form-absolute ethanol. The new peaks in the spectra

rg. 1. HOLOH POINT SPOCHS (CIRCLE SOLUTION, amount temporature) of a) $0.06 M \text{Fe}(S_2 \text{CN}(\text{CH}_2)_4 \text{O})_3$, b) $0.05 M \text{Fe}(S_2 \text{CN}$ $(C_6H_{11})_2$ ₃ and c) approx. 0.05 *M* of 1:1 mol mixture of $Fe(S_2CN(CH_2)_4O)_3$ and $Fe(S_2CN(C_6H_{11})_2)_3$ recrystallized from a chloroform-ethanol solution. An additional broadened peak at 1086 Hz is also observed in spectrum c. Relative amplification of c is 2.5 times that of a and **b**. The **standard and were measured at a field strength of 18.682 kG.**

are interpreted as due to mixed ligand iron(II1) dito interpreted as due to inixed it and nonfinity di-
hiocarbamates, e.g., Fe(S₁CN(CH₁₁)2) C₂CN- (10V) (C₆, $\frac{1}{2}$, $\frac{1}{2}$). An additional broad peak at 1006 Hz downfield from TMS was also noted in spectrum c. ω while ω if ω is a special of ω is a special b, a spectrum virtually identical to c appears rapidly and no further virtually identical to c appears rapidly and no
further changes were noted in the spectrum 4 minutes after changes were hored in the spectrum + minutes
fter mixing. Similar results were found in mixing. ttof finalig. Suffiler fosults wore found in finalig.
coeffice soom temperature CDC1 solutions of together room-temperature CDCl₃ solutions of $Fe(S_2CN(CH_2C_6H_5)_2)_3$ with either a or b.

Figure 2 shows a portion of the room-temperature $\frac{1}{2}$ right Z shows a portion of the foom-temperature μ ₁ did it is μ ₁ and b) and μ ₁ μ ₁ molder μ ₁ mol bamato)iron(III) and b) an (approximately) $1:1$ mol mixture of $\text{Fe}(S_2 \text{CN}(C_2 H_5)_2)$ and $\text{Fe}(S_2 \text{CN}_1)$ $(C_6H_{11})_2$)₃. If these two complexes were inert, one would expect spectrum 2b to be a simple combination of spectra 1b and 2a, as is observed for $Co(dtc)_3$ complexes $[12]$. The new peaks in this region of the complexes $[12]$. The new peaks in this region of the omplexes [15]. The new peaks in this region of the spectrum are also interpreted as indicating the rapid
formation of mixed ligand iron(III) dithiocarbamates, ϵ .g., in this case, Fe(S₂CN(C_{2H}) attributation and ϵ ₃, a_6 , in this case, $10(32)$ CN(C₆H₁1)2)2(D2CN(C2H5)2) and $Fe(S_2CN(C_6H_{11})_2)(S_2CN(C_2H_5)_2)_2$. Two additional broad peaks were noted in spectrum 2b, at 1012 and 1300 Hz downfield from TMS.

Initial attempts to observe mixed ligand complexes in the infrared spectrum were unsuccessful. The if the infrared spectrum were disuccessful. The infrared spectrum $(4000-200 \text{ cm}^{-1})$ in Nujol) of 1:1 mol mixture of $Fe(S_2CN(CH_3)_2)_3$ and $Fe(S_2CN (C_2H_s)_2$)₃ recrystallized together from a chloroformn ethanol mixture (*i.e.*, allowed to undergo metathesis)

re. 2. From the Special (CDC) solution, ambient temperature) of a) 0.32 *M* $Fe(S_2CN(C_2H_5)_2)_3$ and b) 0.25 *M* $Fe(S_2CN(C_2H_5)_2)_3$ and 0.19 M $Fe(S_2CN(C_6H_{11})_2)_3$. Two additional broadened peaks are found at 1012, and 1300 Hz are observed in spectrum b. Relative amplification of spectra is 3.75 times that of spectra a and b in Fig. 1. The peak positions are reported relative to a TMS internal standard and were measured at a field strength of 18.682 kG.

 $d = \frac{1}{2}$ differ from a 1:1 mixture of the two complexes ground to ground the international combination or a simple combination of the combination of the combinaplexes ground together in Nujol or a simple combination of the spectra of the two pure compounds.

 $Fe(S_2CNR_2)_{3} + Na(S_2CNR_2)$ *The* reactions: $Fe(S_2CN(C_2H_5)_2)_3 + xs NaS_2CN(CH_3)_2 \rightarrow$

and

$$
e(S_2CN(CH_3)_2)_3 + xs NaS_2CN(C_2H_5)_2 \rightarrow
$$

$$
Fe(S_2CN(C_2H_5)_2)
$$

 $Fe(S_2CN(CH_3)_2)_3$

carried out in acetone solution clearly indicate that alities out in account solution creatly insiear that a^2 Ma $(4n^2)$ in solution. The dimethyl and dimethyl and distribution. $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ suited to the third the this preparative to the this preparativ exchange are ideally suited to this preparative demonstration of ligand exchange, for the iron(III) appears to show no strong preference for either, the solubilities of the reactants and products pose no problems and the infrared spectra of the two $Fe(dtc)_3$ complexes are quite different. E_{res} complexes are quite univient.

 $\frac{1}{2}$ complicated by the appearent strong preference of $\frac{1}{2}$ complicated by the apparent strong preference of Fe^{3+} for $S_2CN(C_6H_{11})_2$ compared to simpler dithiocarbamates. $Fe(S_2CN(C_6H_{11})_2)_3$ has the lowest room temperature magnetic moment of the $Fe(dtc)_3$ compounds included in this study and tentative assignments of its electronic spectra [5] indicate a high ligand field strength. The presence of any coordinated

 $S_2CN(C_6H_{11})_2$ in a dithiocarbamate tends to dominate the infrared spectrum of the iron dithiocarbamates included in this study.

In the reaction of $Fe(S_2CN(C_6H_{11})_2)_3$ with excess In the feature of Fedge $\frac{1}{2}$ of $\frac{1}{2}$ in a chloroform acetone $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ a $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ mixture, the physical appearance (brown) and
infrared spectrum of the product strongly suggested that metathesis had not taken place. The proton NMR of the recovered product of the reaction is virtually identical to the spectrum of pure $Fe(S_2CN (10.3)$ This result demonstrates that although (2.3) $\epsilon_6H_{11}/2f_3$. This result definitionalizes that artificially $Fe(S_2CN(C_6H_{11})_2)_3$ does undergo ligand exchange
as shown in Figures 1 and 2, $Fe(S_2CN(C_6H_{11})_2)_3$ is more stable than $Fe(S_2CN(C_2H_5)_2)_3$.

$$
Fe(S_2CNR_2)_2Cl + NaS_2CNR'_2
$$

The reaction:
Fe(S_2CN(C_2H_5)_2)_2Cl + xs NaS_2CN(CH_3)_2
Fe(S_2CN(CH_3)_2)_3

in either chloroformacetone or chloroformmethanol solution indicates that although $Fe(S_2CN (C_2H_5)_2(S_2CN(CH_3)_2)$ may be formed initially, meta- σ_2 ₁₁₅ μ_2 (σ_2 ₂₁₁₅ μ_3 ₂₂₁₁₅ μ_4 ₂₂₁₅ μ_5 ₂₂₁₁₅ σ_6 ₁₁₅ σ_7 ₁₅ σ_8 ₁₁₅ σ_7 ₁₅ σ_8 ₁₅ σ_7 ₁₅ σ_8 ₁₅ σ_8 ₁₅ σ_9 ₁₅ σ_9 ₁₅ σ_8 ₁₅ σ_9 ₁₅ σ_9 ₁₅ σ resis continues with 52 CN(CH3)2 in solution. The portion in chronorom methodic was carried with content) of S CN(CH γ ⁻ The slightly high carbon content) of $S_2CN(CH_3)_2$. The slightly high carbon analysis of the product may indicate the presence of
some $Fe(S_2CN(CH_3)_2)_2(S_2CN(C_2H_5)_2)$ in the product.

The reverse reaction, combining $Fe(S_2CN (CH_3)_2)_2$ Cl and NaS₂CN(C₂H₅)₂ could not be carried out because of the limited solubility of $Fe(S_2CN (CH₃)₂)₂Cl$ in organic solvents. T_{tot} reaction between $F_{\text{e}}(\text{C-N/C-II})$ 2.2 Cl and

FOR THE TEACHER OF THE PERSON CALLED THE PLACE OF $\frac{2\pi}{3}$ and $\frac{2\pi}{3}$ excess $NaS_2CN(C_2H_5)_2.3H_2O$ yields a product of intermediate composition (as indicated by elemental analysis). The proton NMR spectrum of the product
in CDCl₃ is markedly different from that of pure Fe(S2CH₃ is matricity unit controlled that of pure $\frac{\log 2 \text{Cov}(C_0 \text{H}_1)}{273}$ or $\frac{\log 2 \text{Cov}(C_2 \text{H}_2)}{273}$ and shows several of the features observed in spectrum b in Fig. 2. This indicates again the preference of Fe^{3*} for $S_2CN(C_6H_{11})_2$ even in the presence of excess $S_2CN(C_2H_5)_2^-.$ $T_{\text{max}}(2115/2)$

THE TESHES OF THE TEACHER DETAILS THE TEACHER $\text{CM}(CII_1)$ may be interpreted $(C_6H_{11})_2_2C1$ and NaS₂CN(CH₃)₂ may be interpreted in the same way. The product separated from this reaction, $Fe(S_2CN(C_6H_{11})_2)_3$, demonstrates the lability of the product which was sought, $Fe(S_2CN (C_6H_{11})_2)_2(S_2CN(CH_3)_2).$

$Fe(S_2CNR_2)_2NCS + NaS_2CNR'_2$ T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_9 T_1 T_2 T_3 T_4 T_5 T_7 T_8 T_9 T_9 T_1 T_1

the feaths of these experiments closely parameters those of the corresponding $Fe(S_2CNRR')_2Cl$. In addition, the proton NMR spectrum of the product from the reaction of $Fe(S_2CN(C_6H_{11})_2)_2NCS$ and NaS₂CN-
(CH₂)₄O is, except for relative intensities, identical to

the spectrum shown in Fig. lc. Also, the proton NMR spectrum of the product of the reaction between spectrum of the product of the reaction between $Fe(S_2CN(C_6H_{11})_2)_2NCS$ and $NaS_2CN(C_2H_5)_2.3H_2O$ is virtually identical to that of the product of the reaction of the analogous $Fe(dtc)_{2}Cl$ complex.

Summary

These **results** clearly verify the results reported by Pignolet et al. [13] *i.e.,* Fe(SsCNR& complexes Pignolet et al. [13] i.e., $\text{Fe}(S_2 \text{CNR}_2)$ complexes undergo fairly rapid exchange with other dithiocarbamate ions. Although their experiment involved exchange between two different tris complexes, the results reported in this study encompass a variety of circumstances culminating in the exchange between a tris complex and an excess of the sodium salt of a dithiocarbamate. These results are especially significant when one

examines the reported preparations [12] of a variety examines the reported preparations $[12]$ of a variety of pure mixed ligand dithiocarbamates of iron(III), e.g., $Fe(S_2CN(C_2H_5)_2)(S_2CN(CH_2)_4)$, which were characterized by elemental analyses, molecular weight, magnetic moment, infrared and ultravioletvisible spectra and melting point. Tsipis et al. [12] reacted *stoichiometric quantities* of $Fe(S_2CNR_2)_2Cl$ and $NaS_2CNR'_2$ or $((iC_3H_7)_2NH_2)(S_2CNR'_2)$ in appropriate organic solvents. Products were recrystallized. This study strongly suggests that these complexes were mixtures of varying quantities of all possible metathesis products. If the various possible complexes were of approximately equal solubility, a mixture of products would be indistinguishable from $Fe(S_2CNR_2)_{2}(S_2CNR'_2)$ by any measurement
of bulk characteristics, i.e., elemental analysis, bulk characteristics, *i.e.*, elemental analysis, magnetic moment or molecular weight. The ultraviolet-visible region of the spectra of these black and brown compounds are dominated by strong chargetransfer bands which would make detection of mixtures quite difficult. The infrared spectra reported by Tsipis *et al.* [12] are limited to reports of $C-N$ stretching frequencies which vary from extremes of 1464-1480 cm^{-1} and assignments of C-S stretching frequencies. Neither measurement conclusively indicates the presence of a single mixed ligand product.

The results of this study indicate that the presence of a halide or pseudo-halide is not necessary for ligand exchange to take place, but indicates that in solution $Fe(S_2CNR_2)_3 + nSCNR'_2 \neq Fe(S_2CNR_2)_{3-n}$ $(S_2CNR'_2)_n$ or $Fe(S_2CNR_2)_3$ + $Fe(S_2CNR'_2)_3$ \rightleftarrows $Fe(S_2CNR_2)$ ₂(SCNR[']₂) takes place within minutes for both predominantly high-spin and low-spin com-

plexes and the nature of isolated products depends on the relative amounts of reactants, differing stabilities the relative amounts of reactants, differing stabilities of various dithiocarbamate ligands with Fe^{3+} , and the solubilities of the products.

Acknowledgements

The author wishes to acknowledge Mr. Robert The author wishes to acknowledge Mr. Robert Dubbert for his preliminary experimental work, Mr. V. V. Krishnamurthy for his assistance in operating the NMR spectrometer and Dr. William G. Movius for his assistance in interpreting the NMR spectra. The author also gratefully acknowledges Dr. David L. Uhrich for helpful discussions and suggestions during all phases of this study.

References

- **1** L. Cambi and L. Szego, *Chem. Ber., 64,* **2591** (1931);L. Cambi and L. Szego, *Chem. Ber.*, 04, 2591 (1931); L. Cambi, L. Szego and A. Cagnasso, Atti. Accad. Nazl. *Lincei, 15, 266, 329 (1932); L. Cambi and L. Malatesta, Chem. Ber., 70, 2067 (1937). 2 Dem. Ber., 70, 2067 (1937)*.
- **A. H. White, R. Roper, E.Kokot, H. W.** *Aust. 1964* **3 Martin, Aust. J. Chem., 17, 294 (1964).** And A. H. White, A. H.
- **R. H. Ewald, R. L. Martin, I. G. Ross a** *Proc. R. Soc. Lond., 280A, 235 (1964).*
- 4 R. L. Martin and A. H. White, Transition Metal Chemistry (Edited by R. L. Carlin), Vol. 4, p. 113, Marcel Dekker, New York (1968). $S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- **I. H. Ewald, K. L. Martin,** *Inorg. Chem. 8, 1837 (1969).*
- 6 R. R. Eley, R. R. Myers and N. V. Duffy, *Inorg. Chem.*, *11*, 1128 (1972). $\frac{1}{1}$, 1128 (1972).
- B. Zimmerman, *I. W. Starinshak*, *D. L. 8 S. Mitra, C. L. Raston and A. H. White, <i>8 S. Mitra, C. L. Raston and A. H. White,*
- *S. Mitra, C. L. Raston and A. H. White, Aust. J. Chem.,* 31, 547 (1978) and references therein.
- R. D. Bereman, M. R. Churchill and D. Nalewojek, Inorg. Chem., 18, 3112 (1979).
- 10 E. J. Cukauskas, B. S. Deaver, Jr. and E. Sinn, J. Chem. Phys., 67, 1257 (1977) and references therein.
- D. P. Rininger, N. V. Duffy, R. C. Weir, E. Gelerinter, *J.* Stanford and D. L. Uhrich, *Chem. Phys. Lett.*, 52, 102 (1977). **102 (1977).** C. A. Hadjikostas and G. E. Manoussakis, C. Manoussakis, C. Manoussakis, C. Manoussakis, C. Manous
- *I.* A. Isipis, C. C. Hadjikostas and Inorg. Chim. Acta, 23, 163 (1977).
- 13 M. C. Palazzotto, D. J. Duffy, B. L. Edgard, L. Que, Jr. and L. H. Pignolet, *J. Amer. Chem. Soc.*, 95, 4537 (1973). *14* M. Kostanski and S. Magas, *Radiochem. Acta, 27, 27*
- *(1980). 15 S.* Akerstrom, *Arkivfor Kemi, 14, 387* **(1959).**
- $5. S.$ Akerstrom, Arkiv for Kemi, 14, 387 (1959).
- 16 R. L. Martin and A. H White, *Inorg. Chem.*, 6, 712 (1967). 17 E. A. Pasek and D. K. Straub, *Inorg. Chim. Acta, 21,*
- *29 A. Pasel 29 (1977).*
- 18 L. M. Epstein and D. K. Straub, *Inorg. Chem.*, 8, 560 (1968).